

The Health-Ready Components and Systems (HRCS)Consortium and IVHM

Peter H. Grau Program Manager May 28, 2020

Collaborative Innovation. Trusted Implementation.

FOUNDATIONAL DOCUMENT: SAE JA6268

Downloaded from SAE International by SAE International Sales Team Use - Internal Use ONLY, Monday, May 21, 2018

SURFACE VEHICLE/AEROSPACE RECOMMENDED PRACTICE

JA6268™ APR2018
Issued 2018-04

Design & Run-Time Information Exchange for Health-Ready Components

RATIONALE

This Surface Vehicle & Aerospace Recommended Practice was created to help reduce existing barriers to the successful implementation of Integrated Vehicle Health Management (IVHM) technology into the aerospace and automotive sectors by introducing health-ready components. Health-ready components are augmented either to monitor and report their own health or, alternatively, ones where the supplier provides the integrator sufficient information to accurately assess the component's health via a higher-level system on the vehicle. The principal motivation for health-ready components is to facilitate enhanced IVHM functionality in supplier-provided components that better meet the needs of end users and government regulators in a cost-effective manner. Underlying this motivation is the assumption that market forces will drive the need to achieve IVHM's benefits, which will in turn drive new requirements that suppliers must ultimately meet. This recommended practice has two primary objectives: (1) to encourage the introduction of a much greater degree of IVHM functionality in future vehicles at a much lower cost, and (2) to address legitimate intellectual property concerns by providing recommended IVHM design-time and run-time data specification and information exchange alternatives in an effort to help unlock the potential of IVHM.

WHAT IS A HEALTH-READY COMPONENT?

- Health-ready components monitor their own health or condition. For example, an automobile starter could monitor these parameters:
 - 1.) Cranking speed
 - 2.) Current draw
 - 3.) Bendix engagement time
 - 4.) Environmental conditions
 - 5.) Vibration
- Instead of a "Check Engine" light, a prognostic algorithm could derive Remaining Useful Life (RUL) and inform the driver to return for service within two weeks.
- If there is high accuracy in the prognostic (99%) can save diagnosis time and lower cost of the repair.

WHAT IS A HEALTH-READY COMPONENT?

- Alternatively, the part could provide information to a higher-level system on the vehicle (or combination of both) such as the entire starting system. The system could monitor:
 - 1.) Starter
 - 2.) Battery
 - 3.) Ignition system
 - 4.) Fuel system
- Information sharing should be machine-readable and standardized for interoperability
- This is key to unlocking the potential of Integrated Vehicle Health Management (IVHM)

SAE VEHICLE MAINTENANCE/IVHM CAPABILITY

SAE	Vehicle		Participation in	Key Data	Availability of	Use of	IVHM System	(VEHICLE LEVEL)
Level	Health Capability	Narrative Description	Repair Actions	Resources	Logged &/or Real-Time Data	Supporting Models	Characteristics	(SOURCE: SAE JA6268)
Man	ual Diagr	nosis & Repair Pro	ocess perfor	med by T	echnician			,
0	Limited On-Vehicle Warning Indicators	Service actions for scheduled maintenance or when Operator notices problems or is alerted by indicator lights or simple gages.	Operator/Driver & Service Tech	On-Vehicle Measurements & Observation	N/A	Paper-based Manuals	Only Manual Diagnostic Tools & No Condition- Based Services	All pre-1980 automotive vehicles
1	Enhanced Diagnostics Using Scan Tools	Service techs gain added diagnostic insight using automated scanners to extract vehicle operating parameters & diagnostic codes.	Operator/Driver & Service Tech	On-Vehicle & Service Bay/ Depot Tools	Logged Diagnostic Codes & Parameters available to Service Tech	Paper-based Manuals	On-Board Diagnostics Available	Introduction of microprocessor-based controls & OBD 1980-1995
2	Telematics Providing Real-Time Data	Service techs gain real-time vehicle data via remote monitoring of vehicle to more completely capture issues.	Operator/Driver, Service Tech & Remote Support Center Advisor	On-Vehicle, Service Bay / Depot & Cloud Data	Telematic Data Available to Service Tech with Diagnostics Info	Paper-based Manuals	On-Board & Remote Data Available	Introduction of GM Onstar telematic services 1996-2014 (OBD II)
Diag	nosis &	Repair Augmented	d by Progno	sis & Pred	dictive Analy	ytics		
3	Component Level Proactive Alerts	Operator and service techs are provided with component health status (R/Y/G) before problem occurs . Limited condition-based maintenance.	Operator/Driver, Service Tech & Cloud-Based Services	On-Vehicle, Service Bay & Cloud Data	Telematic Data Available to Service Tech with Diagnostics Info	Addition of Component- Level Health Models	Component-Level Health Predictions	Introduction of Onstar Proactive Alerts post-2015
4	Integrated Vehicle Health Mgmt.	Operator and service techs are provided with system or vehicle level health indicators before problems occur with remaining useful life estimated. Condition-based maintenance.	Operator/Driver, Service Tech & Cloud-Based Services	On-Vehicle, Service Bay & Cloud Data	Telematic Data Available to Service Tech with Diagnostics Info	Addition of Vehicle-Level Health Models	Vehicle-Level Health Management	Necessary enabler for future Autonomous & Active Safety Vehicles
5	Self- Adaptive Health Mgmt.	Self-adaptive control and optimization to extend vehicle operation and enhance safety in presence of potential or actual failures.	Operator/Driver, Service Tech & Cloud-Based Services	On-Vehicle, Service Bay & Cloud Data	Telematic Data Available to Service Tech with Diagnostics Info	Addition of Vehicle-Level Health Models	IVHM Capability Integrated into Vehicle Controls	Long-range vision

SAE AUTONOMOUS VEHICLE & IVHM CAPABILITY

VEHICLE LEVEL)

(SOURCES: SAE J3016 & JA6268)

Illustrating autonomous vehicle capability

Illustrating vehicle IVHM capability

SAE level	Name	Narrative Definition	Execution of Steering and Acceleration/ Deceleration	Monitoring of Driving Environment	Fallback Performance of <i>Dynamic</i> <i>Driving Task</i>	System Capability (Driving Modes)
Huma	n driver monit	ors the driving environment				
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	Human driver and system		Human driver	Some driving modes
2	Partial Automation	the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/ deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	System	Human driver	Human driver	Some driving modes
Autor	mated driving s	ystem ("system") monitors the driving environment				
3	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver	System	System	System	All driving modes

SAE Level	Vehicle Health Capability	Narrative Description	Participation in Repair Actions	Key Data Resources	Availability of Logged &/or Real-Time Data	Use of Supporting Models	IVHM System Characteristics
Man	ual Diagr	nosis & Repair Pro	ocess perfor	med by To	echnician		
0	Limited On-Vehicle Warning Indicators	Service actions for scheduled maintenance or when Operator notices problems or is alerted by indicator lights or simple gages.	Operator/Driver & Service Tech	On-Vehicle Measurements & Observation	N/A	Paper-based Manuals	Only Manual Diagnostic Tools & No Condition- Based Services
1	Enhanced Diagnostics Using Scan Tools	Service techs gain added diagnostic insight using automated scanners to extract vehicle operating parameters & diagnostic codes.	Operator/Driver & Service Tech	On-Vehicle & Service Bay/ Depot Tools	Logged Diagnostic Codes & Parameters available to Service Tech	Paper-based Manuals	On-Board Diagnostics Available
2	Telematics Providing Real-Time Data	Service techs gain real-time vehicle data via remote monitoring of vehicle to more completely capture issues.	Operator/Driver, Service Tech & Remote Support Center Advisor	On-Vehicle, Service Bay / Depot & Cloud Data	Telematic Data Available to Service Tech with Diagnostics Info	Paper-based Manuals	On-Board & Remote Data Available
Diag	nosis &	Repair Augmented	d by Progno	sis & Pred	dictive Analy	rtics	
3	Component Level Proactive Alerts	Operator and service techs are provided with component health status (R/Y/G) before problem occurs . Limited condition-based maintenance.	Operator/Driver, Service Tech & Cloud-Based Services	On-Vehicle, Service Bay & Cloud Data	Telematic Data Available to Service Tech with Diagnostics Info	Addition of Component- Level Health Models	Component-Leve Health Predictions
4	Integrated Vehicle Health Mgmt.	Operator and service techs are provided with system or vehicle level health indicators before problems occur with remaining useful life estimated. Condition-based maintenance.	Operator/Driver, Service Tech & Cloud-Based Services	On-Vehicle, Service Bay & Cloud Data	Telematic Data Available to Service Tech with Diagnostics Info	Addition of Vehicle-Level Health Models	Vehicle-Level Health Management
5	Self- Adaptive Health Mgmt.	Self-adaptive control and optimization to extend vehicle operation and enhance safety in presence of potential or actual failures.	Operator/Driver, Service Tech & Cloud-Based Services	On-Vehicle, Service Bay & Cloud Data	Telematic Data Available to Service Tech with Diagnostics Info	Addition of Vehicle-Level Health Models	IVHM Capability Integrated into Vehicle Control

DEFINING TERMS...

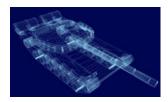
Diagnosis:

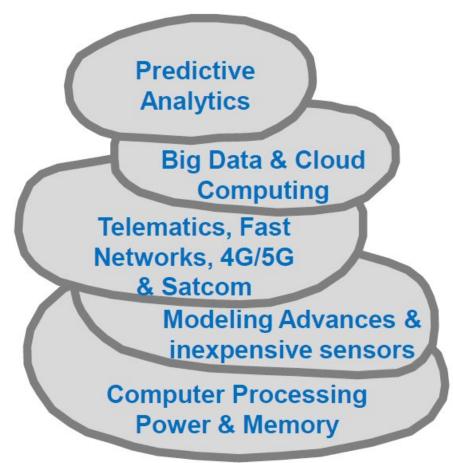
Process of determining the root cause of a problem once a failure has occurred ...that is, what part replacement(s) or repair action is necessary to fix the problem (today's world in automotive)

Prognosis:

Process of predicting the onset of a potential failure mode BEFORE the failure has occurred ...while the component is still operating within specs & with sufficient advance notice to avoid the problem (RUL)

Caveat: This distinction is *very* significant technically but is mostly lost on the public





TECHNOLOGICAL ADVANCES CREATING A NEW PARADIGM

Prognostics were enabled by stacking a series of technological advances

- Trend toward electrification (p/s, p/b, fan, landing gear)
 - lighter, more efficient, built-in signaling capacity
- ...but business and social systems need to evolve
 - data ownership?
- ...but we need better real-time performance, scalability, and sustainability

HRCS FOCUS: MOBILITY (BUT CAN ALSO BE APPLIED TO FIXED-BASE EQUIPMENT)

Current Members:

Bell Aerospace Global Strategic Solutions General Motors

Garrett Motion

VHM Innovations

Volvo GTT (Group Trucks Technology)

IVHM IN SPACECRAFT

Spacecraft: Fédération Aéronautique Internationale: Must reach an altitude of at least 100km (Kármán line)

• First spacecraft: German V-2 reached 189km in June 20, 1944

First orbital spacecraft: Russian Sputnik 1 reached orbit on October 4, 1957

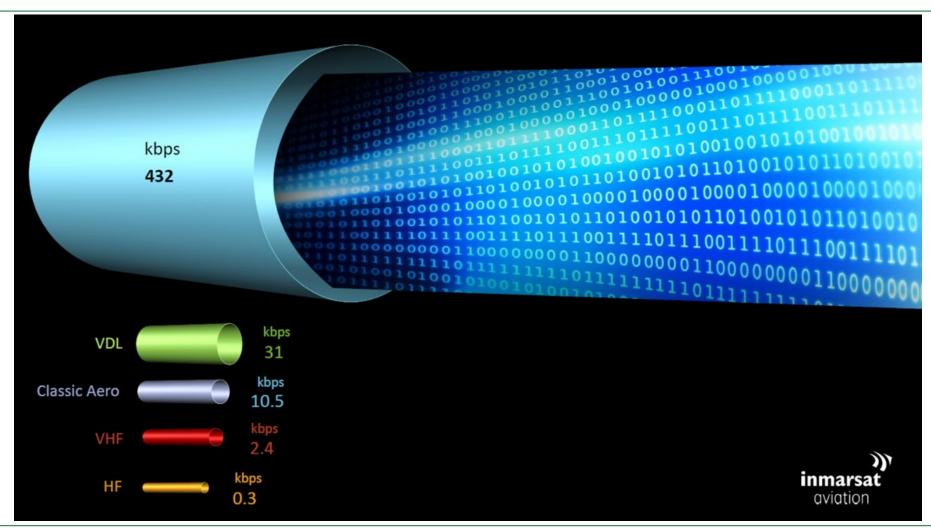
- First human spaceflight: Russian Yuri Gagarin April 12, 1961
- First lunar landing: Americans Neil Armstrong and Buzz Aldrin July 20, 1969

First GPS satellite constellation 1978

- First IVHM 1978-1984 GPS constellation
 - NRTE (non-repeatable transient events preceded failures, thought to be random)

IVHM IN AIRCRAFT

- First flight: Frenchman Montgolfier September 19, 1783
 - · Hand signals, signs, and torches
- First heavier than air flight: American Orville Wright in Kitty Hawk, NC December 17, 1903
 - Two-Way radio 1915
- First transatlantic crossing: American Charles Lindberg New York to Paris May 21, 1927
 - Radar- Mid-1930s
- First commercial jet transatlantic crossing October 4, 1958
 - Air Traffic Control (ATC) System Mid-1950s
- First communication by Airlines Communications Addressing and Reporting System (ACARS) 1978
 - Improvements in safety, efficiency, and air traffic management
- Other systems Ku, Ka, L-Band, Wifi, 4G/5G, etc. enable Connected Aircraft
 - Real-time data monitoring, big data, predictive analytics, improved operations



COMMUNICATIONS PIPE (SOURCE: MARY MCMILLAN- INMARSAT)

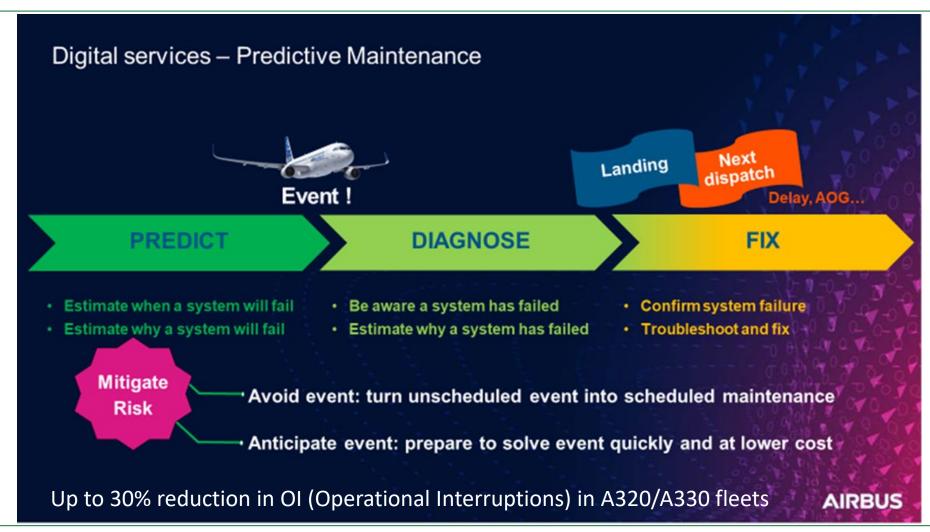
IVHM IN AIRCRAFT

- Over 50% of operators were using data analytics to compete in 2019
- 10-40% reduction in maintenance costs
- 25% cost reduction in remote maintenance

A320: 400 parameters 50MB

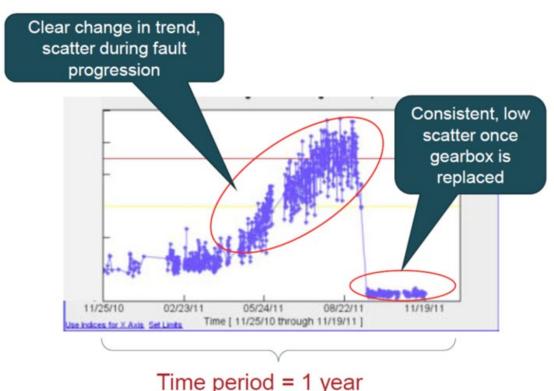
A320: 24,000 parameters 12GB

A330: 1500 parameters 200MB


A330: 40,000 parameters 30GB

A350: 600,000 parameters 1TB 6,000 sensors

PREDICTIVE MAINTENANCE (SOURCE: JEAN-FRANCOIS ST. ETIENNE- AIRBUS)



BELL IVHM IMPLEMENTATION (SOURCE: BRIAN TUCKER- BELL AEROSPACE)

Big Data Application

Finding Anomalies in **Vibration Data**

- Thresholds
 - based on fleet characterization
- Automated trend detection

Time period = 1 year

HRCS DATABASE: 3 REGISTRATION STAGES

(NOTE: COMPONENT/SUBSYSTEM LEVEL)

Ladder-like structured Stage Registrations for easy entry and upgrades when ready. No proprietary information will be requested or listed.

Stage 1: Functional Self Assessment

Stage 2: Failure Modes Assessment

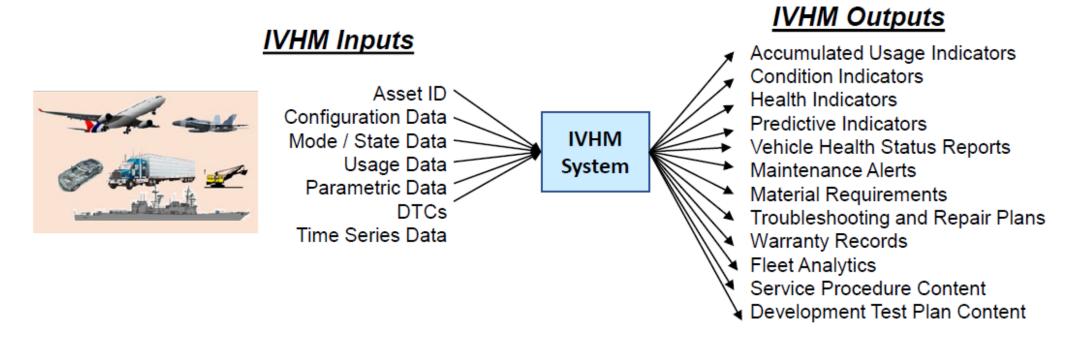
Stage 3: Detailed Design Assessment

Note:

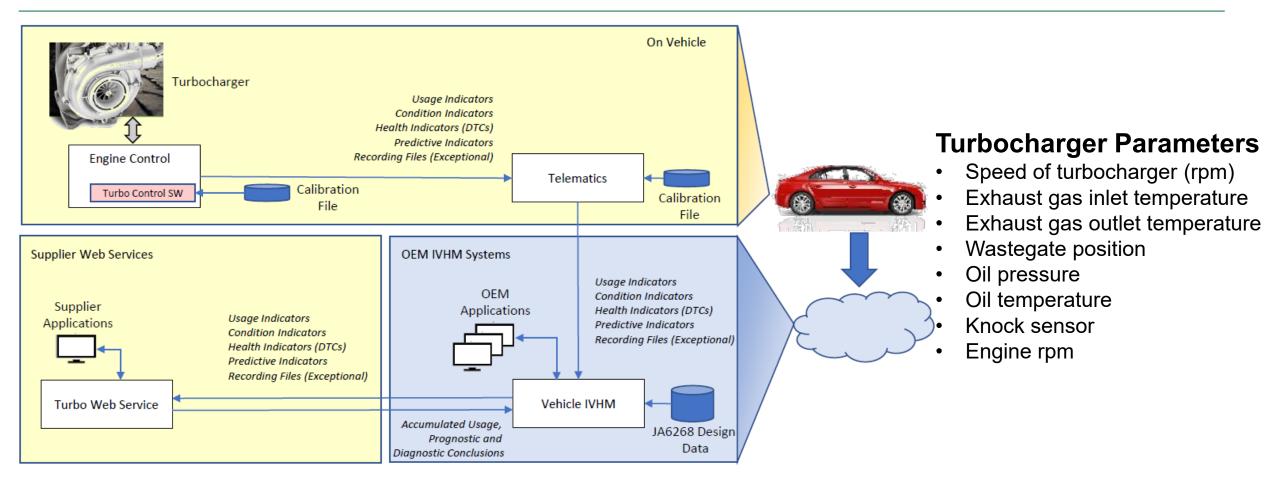
- Stage 1 is a low barrier to entry provisional registration. All Stage 1 information will be recorded in online HRCS Registry.
- Stages 2 & 3 are enhanced by seeking an OEM/ integrator to validate the more detailed supplier-provided assessments. Stage 2 & 3 completion will be noted in HRCS Registry. This additional (potentially proprietary) data will not be loaded into the registry.

DATABASE THREE REGISTRATION STAGES

(NOTE: NOW AT THE COMPONENT/SYSTEM LEVEL)


HRCS DATABASE LISTING DETAIL

INTEGRATED VEHICLE HEALTH MANAGEMENT (IVHM)



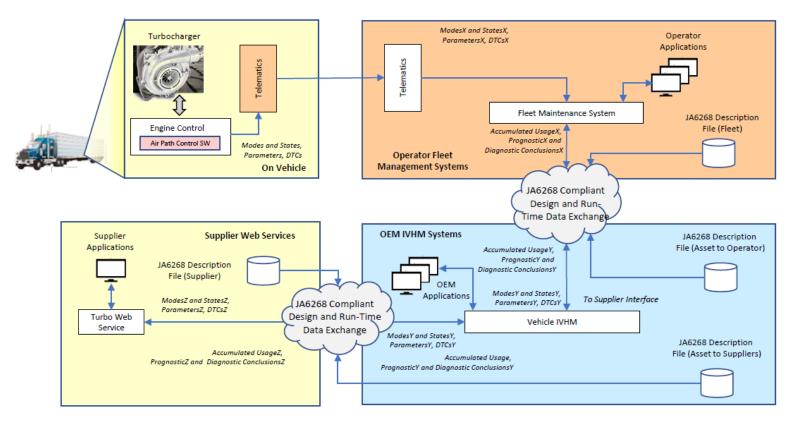
In Summary: IVHM provides value by monitoring the health of asset and recommending a (near) optimal sequence preventative and corrective actions.

IVHM Primary Challenge: How can we build a system with sufficient accuracy with a cost that is significantly less than the value it provides.

EXAMPLE APPLICATION OF JA6268 FOR A TURBOCHARGER

JA6268 is used to standardize design-time data submittals, web service APIs, and run time messages

HRCS- ATA (AMERICAN TRUCKING ASSOCIATION) PILOT PROJECT

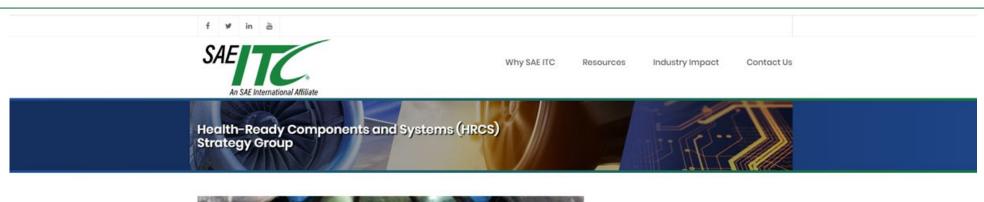

Lead Organization: SAE ITC HRCS Consortium & ATA's Technology and Maintenance Council (TMC)

- Confirmed participants:
 - Volvo GTT (tractor)
 - Garrett Motion (turbocharger)
 - Platform Science (telematics)
- Other interested parties:
 - UPS/Schneider/FedEx/Southeastern (fleet operators)
 - Great Dane (trailer)
 - ABS supplier?

HRCS- ATA (AMERICAN TRUCKING ASSOCIATION) PILOT PROJECT

Commercial Trucking – Proposed Pilot Program

Pilot will demonstrate how JA6268 and HRCS support the integration of IVHM data and functionality between participants



OTHER PILOT PROJECTS IN DEVELOPMENT

- General Motors: Exploring a steering related project
- **Bell Aerospace:** In partnership with Astronics using electrical signals from their power distribution system as input parameters
- HRCS Templates: Development directed by the HRCS Executive Committee and supported by sector specialists
 - Base level parts with master and sector templates
 - Standard signals defined, proprietary signals only shared between supplier and OEM
 - Will be available in the HRCS database
 - Templates can be updated and refined

HEALTH-READY COMPONENTS AND SYSTEMS

About Members News Events Presentations Testimonials Registry

About Health-Ready Components and Systems (HRCS)

Background
Benefits

www.sae-itc.com/hrcs

HRCS CONSORTIUM DISCUSSION

Questions?

HRCS CONSORTIUM CONTACT INFORMATION

Peter H. Grau

Program Manager

Health-Ready Components & Systems Strategy Group

+1 240-334-2580 (office)

+1 443-221-8209 (mobile)

peter.grau@sae-itc.org

www.sae-itc.com/hrcs

